Каждый водитель знает, как порой утомляет желтизна обычных ламп накаливания в фарах автомобиля. Устанавливать ксеноновые лампы нежелательно, хотя они и имеют низкое потребление и большой срок службы. Из-за сильного ослепления водителей встречного транспортного потока возрастает вероятность аварийных ситуаций. Хорошее и не чрезмерно белое свечение дают галогенные лампы.
Их основной недостаток – повышенное энергопотребление и тепловыделение. Кроме того, как и все лампы на основе нити накаливания, они имеют срок службы вдвое меньше чем ксеноновые.
Физика процесса перегорания нити накаливания проста. Всякий проводник при нагревании увеличивает сопротивление проходящему току. Нить накаливания в рабочем режиме раскаляется и обеспечивает необходимую мощность свечения. При этом её сопротивление обеспечивает ток в цепи недостаточный для плавления металла нити. При включении, сопротивление холодной лампы в 12–13 раз меньше рабочего и соответственно во столько же раз больше электрический ток. Именно в этот момент чаще всего и происходит перегорание нити накаливания.
Идеально было бы плавно увеличивать напряжение вслед за разогревом и соответственно возрастанием сопротивления. Эта идея не нова – в бытовых светильниках давно применяются электронные устройства, обеспечивающие плавное включение и продлевающие срок эксплуатации ламп накаливания. Примеры схем подобных устройств можно найти в интернете в большом количестве. Применяя их для автомобиля, нужно учесть, что лучше использовать замену штатной сменной детали принципиально новой без необходимости переделки основной проводки.
Эта идея была осуществлена на автомобиле марки KIA Cerato LD выпуска 2008 г. с галогенными лампами Philips CrystalVision H4 простой заменой штатного реле управления ближним светом на доработанный аналог в соответствии с новыми требованиями.
Схема управления фарами с некоторым упрощением представлена на рисунке.
Красным цветом выделено легкосъемное реле, которое и требует доработки. Удобно что через контакт «30» есть всегда питание +12 В, а через «86» и выключатель света или через «87» и холодные лампы, с практически нулевым сопротивлением, всегда есть соединение на массу.
Технические требования были выдвинуты следующие:
• потребление электронного реле при отключенном зажигании в пределах 5–7 мА, обеспечивающее небольшой ток утечки для защиты аккумулятора от разряда; • при первом включении фар должен обеспечиваться плавный нагрев нитей ламп в течение 10–12 сек.; • при отключении света менее чем на 0,5 сек. и последующем его включении, если зажигание не выключалось, задержка должна составлять 0,5 сек. с выходом на 80% мощности плюс 1 сек. для достижения 100% уровня свечения; • при включенном двигателе 0,5 сек. поддерживается 50% мощность ближнего света после его отключения.
Последний пункт требует пояснения. В стеклянных колбах ламп модели H4 совмещены спирали ближнего и дальнего света. При этом схема проводки автомобиля выполнена так, что они могут включаться только попеременно. Вся конструкция после первого включения поддерживается в достаточно горячем состоянии и уже не требуется большая задержка на разогрев нитей. Это важно при кратковременном мигании дальним светом. После него ближний свет включится без задержки и не создаст неудобств дорожному движению в тёмное время суток.
Введение
В моём автомобиле, Kia Cerato LD (2008) установлены галогенные фары. Слепить встречных водителей колхозно установленным «ксеноном» у меня нет никакого желания, но белый свет фар, мне кажется, куда приятнее для глаз, чем утомляющая желтизна «обычной» лампы. Я предпочитаю галогенные лампы Philips CrystalVision, которые дают световой пучок белого цвета по остальным параметром такой же как у «обычной» лампы — то есть встречные водители не ослепляются при правильной настройке фары. За такой комфорт приходится платить: мало того что они значительно дороже обычных фар, так ещё и ресурс у них не очень велик. Я заметил что момент перегорания обычно совпадает с моментом включения фар. И действительно: наибольшая нагрузка на нить выпадает на тот момент, когда от уличной температуры ей за доли секунды приходится нагреться до нескольких тысяч градусов.
Сопротивление нити лампы зависит от её температуры. Так, сопротивление холодной нити может быть в 12-13 раз ниже, чем в рабочем режиме, соответственно, в момент включения через холодную лампу протекает ток в 12-13 раз больше номинального, что также влечёт увеличение рассеиваемой мощности. Этот момент и становится губительным для лампы. Что, если замедлить нагрев нити? — подумал я. Если растянуть момент нагрева нити на несколько секунд, возможно, это увеличит срок её службы?
Идея плавного включения света не нова: при помощи мощного полевого транзистора и широтно-импульсного модулятора такаю задача реализовывалась не раз, и в интернете найдётся с десяток различных вариантов схем. Всех их объединят то, что они требуют доработок проводки самого автомобиля. А вот возможно ли собрать такую схему в корпусе штатного реле? Тогда вся установка на автомобиль заключалась бы в простой замене реле, без необходимости ворошить внутренности автомобиля. Задачка показалась мне интересной и я приступил…
Плавный розжиг автомобильных фар
По мимо эстетические удовольствия от постепенного загорания фар, схема розжига имеет и практическую ценность для ламп. На лампах не будет резких скачков напряжение что увеличит срок ее службы и защитит от нежелательных выгораний. Для реализации схемы плавного розжига автомобильных фар, самым главным элементом будет полевой транзистор.
Транзистор надо брать достаточно мощный рассчитанный на токи до 25 А. Естественно транзистор надо будет установить на теплоотвод, греться будет прилично.
Схему можно использовать и для светодиодных ламп или лент, тогда такого мощного транзистора не надо, однако все равно рассмотрим схему для мощных ламп накаливания, т.к.
она справедлива в любом случае не зависимо от того какой источник света стоит на нагрузке.
При установке номиналов, показанных на схеме время включения/отключения фар будет составлять примерно 3-4 секунды.
Время задержки задается RC-цепочкой (на схеме резистор номиналом 51 кОм и конденсатор 220 мкФ). С номиналом резистора можете по экспериментировать, выбирая нужное вам время включения и затухания.
Чем меньше будет номинал резистора, тем быстрее будет происходит заряд/разряд конденсатора.
- Полевой транзистор использовался марки IRF9540, в качестве биполярного транзистора управляющего включением полевика можно взять S9014 или отечественный аналог КТ3102.
Обратите внимания что конденсатор полярный, неправильное полярность, поданная на электролит сразу его, взорвет, будьте аккуратны. Мощности 0,25 Вт хватит для всех резисторов в схеме. Перед установкой в автомобиль обязательно поэкспериментируйте сколько составляет время включения/затухания. При неверной установке номиналов время задержки может растянуться и на пару минут.
Источник: https://xn—-7sbgjfsnhxbk7a.xn--p1ai/plavnyj-rozzhig-avtomobilnyx-far
Требования к схеме
Немного поразмыслив над тем, как это будет выглядеть в эксплуатации, составил для себя такие требования, которым должна удовлетворять схема:
1) Потреблять как можно меньший ток, когда зажигание выключено. Хотя потребление в районе 5-7 миллиампер, которые требуются для питания стабилизатора и микроконтроллера, было бы приемлемым, хочется минимизировать ток утечки.
2) Обеспечивать плавный, в течение 10-12 секунд, нагрев нитей ламп при первом включении. Когда машина только заведена нить должна нагреваться плавно.
3) Если зажигание не выключалось, то после повторного включения ближнего света более быстрый, в течение 0,5 секунд выход на уровень 80% и затем, в течение секунды выход на уровень 100%. Так как используются лампы H4, то есть совмещающие нити ближнего и дальнего света в одной колбе, при включении или мигании дальним светом, ближний свет отключается. После выключения дальнего света фары остаются достаточно горячими и быстрый накал не сильно сказывается на их работе. В то же время ждать несколько секунд, пока они разгорятся, как при первом старте — неприемлемо: в условиях дорожного движения дорога должна быть освещена.
4) При включенном зажигании и отключении ближнего света в течение 0,5 секунды удерживать уровень 50%. Это позволит не охлаждать нить во время кратких миганий дальним светом.
Автоматическое включение фар при зажигании
Для того чтобы организовать такую работу осветительных элементов необходимо подключить их к источнику питания зажигания, а как многие знают одни приборы могут быть подключены при любой позиции замка зажигания, другие же начинают функционировать только при уже включенном зажигании. Исходя из этого самое удобное место для подключения фар – это кнопка включения печки (крайний правый блок выключателей).
Для этой схемы понадобятся:
- любое штатное пятиконтактное реле;
- диод;
- провода.
Далее, нам необходимо:
- Вынуть выключатель габаритов (крайний слева блок выключателей).
- Отключить плюсовой провод от колодки клавиш отвечающей за работу ближнего света (обычно это зеленый двойной провод) и подключить его к реле.
- В плюсовой провод, который идет к выключателю печки, необходимо врезать дополнительный провод и тоже подключить его к реле.
- Подвести к реле провод, который питает сами фары.
- Кинуть проводок на минус (на корпус).
Схема включения штатного реле
Упрощённая схема включения реле ближнего света на Kia Cerato LD |
Рассмотрим схему подключения реле.
Схема довольно проста: выключатель с одной стороны, зажигание с другой — управляют обмоткой реле. То есть отключение света происходит как при повороте выключателя, так и при выключении зажигания.
Выключатель — единственный источник постоянного «минуса» на этой схеме. Но по вышеизложенным требованиям после выключения, схема должна «помнить», что зажигание не выключалась, чтобы быстро вернуть ближний свет, когда он понадобиться. Мало того! Схема должна поддерживать нити в полнакала, после того как выключатель ближнего света отключен.
Однако, источником «минуса» могут являться сами фары, чьё сопротивление достаточно мало. Решением является использование паразитного питания через цепь фар. Если установить конденсатор достаточной ёмкости, чтобы он смог удерживать питание управляющего микроконтроллера, пока тот переключается на режим широтно-импульсной модуляции (ШИМ), то он сможет подзаряжаться в моменты, когда ключ разомкнут.
Автоматический включатель света фар с задержкой | Каталог самоделок
Выполняя требования новых изменений ПДД, следует включать ближний свет на транспортном средстве при движении по загородному шоссе даже днем. В городе тоже нужно не забыть засветить огни в условиях недостаточной видимости.
Кроме принудительных случаев, навязанных законом, каждый водитель сам вправе решать, когда следует обезопасить себя и окружающих. Рекомендуется включать свет на машине при проезде участка дороги возле детских садов, школ, игровых площадок. Любой транспорт, особенно серого, черного, белого цвета кузова, становится в разы заметнее при зажигании головных огней.
В ясный день, когда солнце заставляет зажмуривать глаза, нет никаких побудительных причин потянуться к клавише включения фар. Другое дело, когда за тебя будет помнить о важном автоматика. А чтобы схема автоматического включателя света только радовала, а не была выкинута из машины в скором времени, следует соблюсти несколько условий:
- Фары должны зажигаться с запаздыванием на 10–15 секунд после пуска двигателя. Это необходимо, чтобы не было большой посадки напряжения при одновременной работе мощной осветительной нагрузки и стартера.
- Фары должны выключаться с задержкой (время нужно выбрать индивидуально) после заглушки двигателя. Это важно, чтобы огни не клацались лишний раз, если нужно заглушить машину возле переезда или для быстрой дозаправки. Самодельный блок управления ДХО.
- Электроника должна работать на сравнительно высоких токах. Так нужно, чтобы ни влажность, а также температура, меняющиеся внутри машины в широких пределах, не сильно влияли на работу элементов схемы автоматического включения фар.
- Итак, давно проверена, и успешно используется, вот такая простенькая схема:
- Вместо приведенных элементов можно использовать другие:
- Микросхему К561ЛА7 можно заменить К561ЛЕ5, CD4001, CD4011. Логика входов никакого значения не имеет, поскольку используется только инверсия выходов.
- Диоды КД522 — на КД521, КД105, 1N4148.
- Транзистор КТ815А — на КТ817, КТ604.
- Все конденсаторы нужно подбирать по напряжению на 25 В.
Ну или попробовать другое, более легкое в сборке устройство плавного розжига.
Подключение к питанию
- Анод диода VD1 важно подключить к выходу замка зажигания АСС, от которого подается напряжение в цепь зажигания или включения инжектора. Но только не к клемме включения стартера, так как в этом случае фары или вовсе не включатся, либо сразу погаснут после пуска двигателя.
- Микросхема запитывается напрямую от аккумулятора (+Акк, -Акк), а не с выключаемой цепи.
- Разомкнутые контакты стандартного автомобильного реле К1 подсоединяются в разрыв провода, идущего от цепи питания до контактов ближнего света фар.
Настройка схемы
Время запаздывания включения фар можно установить больше 10–15 секунд, подобрав резистор R2 большего сопротивления.
Время задержки выключения фар при желании можно уменьшить (по данной схеме оно составляет 5–10 минут), установив резистор R1 меньшего сопротивления.
Изменять время задержек, путем замены конденсатора С1 нежелательно, поскольку такой элемент с необычно высокой ёмкостью (в схеме используется на 2200 мкФ) необходим для выдачи относительно высокого тока.
Если во времязадающей цепочке использовать конденсатор малой емкости, то пришлось бы ставить мегаомные резисторы R1, R2, которые не отличаются стабильной работой из-за больших токов утечки.
Переделка под 24 вольта
- Взять все конденсаторы такой же емкости, но на напряжение 50 В.
- Поменять резистор R3 на другой в 300 Ом.
- Между ножками микросхемы 7 и 14 желательно поставить стабилитрон на 5 вольт.
- И не забыть заменить реле на 24-вольтовое.
Источник: https://volt-index.ru/electronika-dlya-nachinayushih/interesnoe/avtomaticheskiy-vklyuchatel-sveta-far-s-zaderzhkoy.html
Схема электронного реле
В итоге родилась такая схема:
Схема электронного реле |
Использованные компоненты
На схеме | Номинал | Корпус | Описание | |
ATtiny13A | ATtiny13A-SSU | soic-8 | Управляющий микроконтроллер | |
79L05 | MC79L05ACD | soic-8 | Стабилизатор -5В, 100мА | |
VD1, VD2, VD3, VD4 | BAS321 | sod323 | диод 200В, 250мА, 50нс | |
R1, R7, R9, R12 | 20кОм | 0805 | резисторы 5%, 0.125Вт | |
R2 | 10кОм | 0805 | резистор 5%, 0.125Вт | |
R3, R5, R10 | 51кОм | 0805 | резисторы 5%, 0.125Вт | |
R4, R6 | 51 Ом | 0805 | резисторы 5%, 0.125Вт | |
R8 | 5.1кОм | 0805 | резистор 5%, 0.125Вт | |
R11 | 130 Ом | 0805 | резистор 5%, 0.125Вт | |
C1 | 22мкФ | D | танталовый конденсатор, 35 Вольт | |
C2 | 2.2мкФ | 1206 | керамический конденсатор X7R | |
VT1 | IRLML0030 | sot23 | МОП транзистор, n-канал, 30В, 5.2А | |
VT2 | 2N7002 | sot23 | МОП транзистор, n-канал, 60В, 115мА | |
VT3 | IRLML5103 | sot23 | МОП транзистор, p-канал, -30В, -0.76А | |
VT4 | IRF9310 | soic-8 | силовой МОП транзистор, p-канал, -30В, -20А, RDS(on) |
Описание электронной части
Реле подключено к электрике автомобиля, как показано на рисунке.
Основной силовой элемент — это полевой МОП транзистор с p-каналом VT4. Главное требование к нему — обеспечить коммутацию постоянного тока не менее 12Ампер, при этом выдерживать импульсный ток до 150 Ампер; он должен обладать низким сопротивлением исток-сток в открытом состоянии, но при этом умеренной входной ёмкостью, и открываться при напряжении исток-затвор 5Вольт. В качестве такового выбран IRF9310, он рассчитан на напряжение сток-исток до 30В и ток до 20А (до 16А при температуре 70 градусов), импульсный ток до 160 Ампер. При напряжении исток-затвор 4,5 Вольта обеспечивает сопротивление исток-сток не более 6,8мОм, входная ёмкость 5,2нФ.
Управляет им микроконтроллер ATtiny13A, работающий на частоте 1,2МГц, потребляющий в таком режиме ток менее миллиампера. Его силовые драйверы способны принимать и выдавать ток до 40мА, чего вполне достаточно для управления затвором силового транзистора. ШИМ выход микроконтроллера, работающий на частоте 2,35кГц, подключен к затвору транзистора через резистор R11 130 Ом, который, с учётом сопротивления затвора, а также падения напряжения под нагрузкой на выводе микроконтроллера, ограничивает ток на уровне 33-35мА. Быстрое закрытие транзистора также обеспечивается разрядом затвора через вывод микроконтроллера, но, когда схема отключена, резистор R12 20килоОм держит транзистор закрытым.
Питание осуществляется через линейный стабилизатор 79L05 отрицательного напряжения -5В рассчитанный на нагрузку до 100мА. В данной схеме он является основным потребителем тока: ток покоя в нём может достигать 6 мА. Пульсации тока, вызванные моментами заряда затвора транзистора сглаживает керамический конденсатор C2, ёмкостью от 2,2 мкФ (можно использовать и 1 мкФ).
Единственный постоянный минусовой провод подходит через выключатель ближнего света. Схема должна и после выключения ближнего света продолжать работать в «полнакала», а также активно отслеживать — не выключалось ли зажигание. Решением для этого является использование паразитного питания через сами лампы. В момент, когда МОП-транзистор VT4 закрыт, через фары и диод VD3 заряжается конденсатор C1, обеспечивающий питание схемы как минимум в течение 10мс. В схеме используется танталовый электролитический конденсатор 22мкФ, но схема будет работать и при использовании конденсатора 10 мкФ. Конденсатор должен быть рассчитан на напряжение не менее 35 Вольт. Резистор R4 51 Ом ограничивает ток в цепи, когда конденсатор разряжен.
Когда выключатель ближнего света включен, схема запитывается через него и диод VD4, дополнительный резистор R6 51 Ом также призван ограничить ток заряда конденсатора, идущий через замыкающиеся контакты выключателя ближнего света. В качестве диодов выбраны BAS321, рассчитанные на постоянный ток 250мА, импульсный (в течение 10мс) ток до 1,7А, с напряжением пробоя 200 Вольт.
Транзистор VT1 отключает схему от питания, когда зажигание выключено. В качестве него выбран n-канальный МОП транзистор IRLML0030, рассчитанный на ток до 5 Ампер и допускающий напряжение между затвором и истоком до 20 Вольт. Вместо него может быть использован и другой транзистор, рассчитанный на ток до 1 Ампера.
При появлении напряжения на линии зажигания, на затворе транзистора через диод VD1 и резистор R1, а также фары, диод VD3 и резистор R4 20кОм поступает ток, который заряжает затвор и открывает транзистор. Когда напряжение на линии зажигания пропадает, затвор разряжается через резистор R3 50кОм. Если в то время, когда зажигание включено и силовой транзистор VT4 открыт, размыкается выключатель ближнего света, то заряд конденсатора C1 через диод, встроенный в сам транзистор V1, продолжает удерживать разницу потенциалов между затвором и истоком транзистора, тем самым не давая ему закрыться, пока микроконтроллер не перейдёт в импульсный режим, что позволит конденсатору подзарядиться через фары.
Одновременно с этим, вход от зажигания через диод VD2 и резистор R2 10кОм, открывает n-канальный МОП транзистор VT2. Он замыкает вывод PB4 микроконтроллера на «землю» микроконтроллера. К линии питания этот вывод подтягивается через встроенный в микроконтроллер подтягивающий резистор (порядка 40 кОм). Ток, проходящий через транзистор VT2 достаточно невелик, порядка 125мкА, но, так как его исток подключен на линию -5В, то важным параметром для его выбора должно являться небольшое пороговое напряжение затвора. Выбор пал на 2N7002 чьё пороговое напряжение не превышает 2,5 В. С учётом того, что между выводами 85 и 30 реле уже может существовать небольшая разница потенциалов, резистор R2 и диод VD2 выбраны так, чтобы минимизировать падение напряжения. В качестве диода используется всё тот же BAS321, при небольших токах падение напряжения на нём составляет порядка 0,7 Вольт. Когда зажигание отключается, затвор транзистора VT2 разряжается через резистор R5 50 кОм, напряжение на выводе PB4 повышается через встроенный подтягивающий резистор, тем самым микроконтроллер оповещается о выключении зажигания. За те несколько миллисекунд, которые обеспечивает конденсатор C1, микроконтроллер успевает разрядить затвор силового транзистора VT4 и перейти в режим ожидания.
Резистор R7 20кОм притягивает вход PB3 микроконтроллера к линии -5В, удерживая тем самым низкий логический уровень на входе. При включении ближнего света через резистор R9 20кОм заряжается затвор p-канального МОП транзистора VT3, в качестве которого выбран IRLML5103, который притягивает вывод PB3 к линии питания и устанавливает высокий логический уровень. При отключении ближнего света, затвор транзистора VT3 разряжается через резистор R10 50кОм, и на входе PB3 микроконтроллера посредством резистора R7 устанавливается низкий логический уровень, оповещая микроконтроллер, что выключатель фар отключен. В этот момент, если силовой транзистор VT4 открыт, то конденсатор C1 не заряжается, но его заряда хватает, чтобы микроконтроллер успел переключиться в ШИМ-управление силовым транзистором, тем самым давая возможность, подзарядиться конденсатору через фары.
Микроконтроллеры AVR обладают встроенным подтягивающий резистором на ножке сброса. Но, чтобы обеспечить стабильность работы в условиях возможных помех, в схему добавлен дополнительный подтягивающий резистор R8 5,1кОм.
Режимы работы
Итак, как ведёт себя схема при разных режимах?
Зажигание и свет выключены.
Транзисторы VT4 и VT1 закрыты. За исключением токов утечки в транзисторах, в пределах нескольких микроампер, ток не течёт.
Включено зажигание.
Через диод VD1 и резистор R1, резистор R4 и диод VD3, открывается транзистор VT1, конденсатор C1 заряжается, включается стабилизатор 79L05, подаётся питание на микроконтроллер. Через диод VD2, резистор R2 открывается транзистор VT2, который сажает вход PB4 микроконтроллера на «землю», чем оповещает что зажигание включено. Микроконтроллер ожидает включение света фар.
Включен ближний свет.
Через резистор R9 открывается транзистор VT3, и сажает вход PB3 микроконтроллера на линию питания, чем оповещает его о включении света фар. Конденсатор поддерживается заряженным через диод VD4. Контроллер управляет силовым транзистором VT4.
Ближний свет выключен.
Транзистор VT3 закрывается резистором R10 и микроконтроллер включает режим ШИМ для управления силовым транзистором. В промежутках, когда транзистор VT4 закрыт, конденсатор C1 подзаряжается через фары и диод VD3. В моменты когда VT4 открыт, VT1 удерживается открытым т.к. присутствующий заряд на C1 попадает на исток транзистора VT1 через встроенный диод.
Выключено зажигание.
Транзистор VT2 закрывается через резистор R5, через встроенный в микроконтроллер подтягивающий резистор на входе PB4 появляется высокий уровень, обнаружив который микроконтроллер закрывает VT4 и переходит в ждущий режим.
Одновременно через резистор R3 закрывается транзистор VT1, отключая конденсатор от фар и выключателя света.
Зажигание выключено, но переключатель ближнего света включен.
В этом случае транзисторы VT1 и VT4 также закрыты, но через резисторы R9 и R10 утекает дополнительно 170 микроампер (при напряжении 12 Вольт)
Отвод тепла
Спецификация на силовой транзистор IRF9310 говорит, что при напряжении затвор-исток -4,5Вольта, сопротивление исток-сток составит максимум 6,8 мОм. Из расчёта с запасом, что фары потребляют 11А, мощность, рассеиваемая на транзисторе составит максимум 0,822 ватта. То есть корпус нагреется на 16,5 градусов, относительно ножек. Задача состоит в эффективном отводе тепла от места пайки транзистора. Спецификация указывает, что даже при пайке на 1 квадратный дюйм (квадрат 25,4 х 25,4мм) меди, толщиной 35мкм повышение температуры составит 50 градусов на ватт, т.е. 41 градус в нашем случае. Хотя в малом корпусе реле не удастся разместить такую площадку для охлаждения, однако отводить тепло можно наружу через ножку реле, припаяв сток транзистора как можно ближе к месту крепления ножки.
Эксперимент при комнатной температуре показал, что, хотя транзистор и нагревается, несколько секунд удержать палец на нём можно. То есть его температура около 55-60 градусов, что на 30-35 градусов больше комнатной. Уровень вполне приемлемый.
Нюансы включения ходовых огней
Основные предписания, касающиеся установки, технических параметров и подключения ходовых огней, перечислены в пункте 6.19 ГОСТ Р 41.48-2004.
В частности, электрическая функциональная схема ДХО должна быть собрана таким образом, чтобы ходовые огни автоматически включались при повороте ключа зажигания (запуске двигателя).
При этом они должны автоматически отключаться, если произведено включение фар головного света.
Пункт 5.12 указанного стандарта гласит о том, что фары головного света (ФГС) должны включаться только после включения габаритов, за исключением подачи кратковременных предупредительных сигналов. При самостоятельном подключении ДХО эту особенность обязательно нужно учитывать.
Правильное подключение ДХО не ограничивается грамотно продуманной функциональной схемой. Самое время вспомнить о блоке стабилизации для светодиодов. В самих ходовых огнях роль ограничителя тока выполняют резисторы, однако, из-за перепадов напряжения, резисторы не могут ограничить ток на одном уровне.
Именно поэтому стабилизатор по напряжению в схеме подключения ходовых огней крайне необходим. Иначе срок эксплуатации светодиодных модулей ДХО значительно сокращается ввиду постоянных перепадов бортового напряжения. Некоторые автолюбители заявляют, что подключить ходовые огни можно и без стабилизатора.
Подключение и установка LED-драйвера – это лишняя трата времени, ведь ДХО на светодиодах месяцами исправно светят без какой-либо стабилизации…
Однако данное утверждение легко оспорить.
Дело в том, что при каждом скачке напряжения на светодиодном модуле появляется более 12 В, прямой ток через светодиоды превышает номинальное значение, что ведёт к перегреву излучающего кристалла.
Яркость светодиодов снижается, такие ДХО уже не смогут выполнять свою непосредственную задачу – издалека предупреждать водителей встречного транспорта, а со временем и вовсе начнут мерцать и выйдут из строя.
Использовать светодиодные ДХО без стабилизатора напряжения – значит выбрасывать каждый год, как минимум, несколько сотен рублей на новые модули и тратить время на их замену.
Включение через габариты или ближний свет
В данном схемотехническом решении имеется несколько недостатков:
- ходовые огни остаются в работе при выключенном двигателе, что противоречит действующим правилам;
- схема не будет работать, если в габаритах тоже установлены светодиоды;
- схема не будет корректно работать, если в ДХО размещены мощные SMD светодиоды, номинальный ток которых соизмерим с током лампочки;
- с целью безопасности необходимо дополнительно устанавливать предохранитель.
При стоянке автомобиля в темное время суток, для его обозначения используются габаритные огни, использование ДХО ПДД запрещено.
Подключение через 4 контактное реле от генератора или датчика масла
- 30 – на плюсовые выводы светодиодных модулей;
- 85 – на плюсовой провод к габаритам;
- 86 – на любой вывод геркона;
- 87 и второй вывод геркона – на «+» аккумулятора.
Проверив надёжность всех контактов, переходят к настройке. Для этого заводят двигатель и, перемещая геркон вблизи генератора, добиваются его срабатывания и стабильного свечения ДХО. Затем геркон прячут в термотрубку и с помощью нейлоновых стяжек фиксируют в найденном месте.
В момент пуска двигателя, а затем и генератора замыкаются контакты геркона и реле, подавая напряжение питания на светодиоды ходовых огней. При этом лампы габаритов остаются отключенными, так как ток через катушку реле мал, чтобы их зажечь.
Подключение через 5 контактное реле
- 30 – на плюсовые выводы светодиодных модулей;
- 85 – на плюсовой провод габаритной лампы;
- 86 – на корпус авто;
- 87а – на «+» с замка зажигания;
- 87 – не подключать (заизолировать).
Работает схема с пяти контактным реле следующим образом. При повороте ключа на ДХО поступает напряжение +12 В, тем самым включая их. Если включить габаритные огни или фары головного света, то реле разомкнёт контакт 87а и замкнёт неактивный контакт 87. В результате ДХО погаснут, а габариты включатся. Схема полностью соответствует требованиям ГОСТа и ПДД и может работать с габаритными огнями даже на основе светодиодов.
Однако схема все же имеет один отрицательный момент – ДХО будут включаться сразу же после поворота замка зажигания. То есть если повернуть ключ в замке зажигания, но не заводить автомобиль, ДХО будут гореть.
Несмотря на все же имеющийся недостаток схема довольно удачна, но чтобы правильно подключить ДХО через пяти контактное реле понадобится обязательно дополнить схему стабилизатором напряжения.
Данный вариант включения интересен тем, что путь протекания тока через ходовые огни является независимым. Это позволяет устанавливать в фары габаритов и ДХО источники света любого типа и мощности.
Блок управления ДХО
Самым надёжным и наиболее простым является вариант подключения ДХО без реле, но с использованием специального блока управления ходовыми огнями. Он обеспечивает включение ДХО после запуска двигателя, гарантирует безопасную работу, защищает от перегрузок и может быть установлен на авто с любым типом ламп, включая светодиодные.
К сожалению, среди всего разнообразия промышленно изготавливаемых блоков ДХО подавляющая часть не соответствует ГОСТу и имеет посредственное качество сборки.
Касается это, в первую очередь, продукции с AliExpress, которая не соответствует требованиям практически по всем моментам.
Среди всего многообразия можно отметить всего 2 варианта: российский блок управления ДХО DayLight+ и немецкую продукцию от Philips и Osram. Блок управления DayLight+ разработан русским радиоинженером Исаченковым Фёдором с учетом всех особенностей бортовой сети автомобиля и обладает рядом положительных моментов:
- имеется встроенная стабилизация напряжения;
- полное соответствие ГОСТу;
- максимальная долговременная мощность нагрузки составляет 36 Ватт (для ДХО требуется значительно меньше);
- простейшая схема подключения.
Источник: https://ledjournal.info/shemy/podklyuchenie-dnevnykh-khodovykh-ogney.html
Алгоритм работы
Медленный разогрев |
Если зажигание было выключено, то при первом включении света фар происходит медленный разогрев:
— в течение 3х секунд коэффициент заполнения ШИМ плавно нарастает до 30%;
— затем, в течение 2х секунд остаётся на том же самом уровне, давая возможность лампам плавно набрать температуру;
— затем, в течение 3х секунд повышается до 80%, давая уже приемлемый уровень освещения;
— и, наконец, в течение 4х секунд доводится до 100%.
Удержание после выключения |
Когда свет фар отключается, то коэффициент заполнения ШИМ устанавливается сразу же на 50%, давая возможность заряжаться конденсатору.
— Он удерживается на этом уровне в течение 0,5 секунды;
— и затем плавно снижается до нуля в течение 0,5 секунды.
Если зажигание не выключалось, то при повторном включении света фар происходит быстрый разогрев:
— в течение 0,5 секунд уровень нарастает до 80%;
— и затем в течение 1 секунды доводится до 100%.
Быстрый разогрев |
Если во время медленного разогрева свет фар был выключен, то:
— если уровень достиг 50%, то осуществляется переход к фазе удержания.
— если уровень менее 50%, то свет выключается, и следующее включение фар будет считаться первым, будет выполняться плавный разогрев.
Если во время быстрого разогрева свет фар был выключен, то:
— если уровень больше, или равен 50%, то осуществляется переход к фазе удержания
— если уровень менее 50%, то переход на фазу удержания осуществляется к той позиции спадающей части, которая соответствует текущему уровню. Иначе говоря, происходит плавное затухание без полусекундного удержания.
Если во время фазы удержания свет фар был снова включен, то осуществляется переход к фазе быстрого разогрева, на точку графика, уровень которого соответствует текущему коэффициенту заполнения ШИМ.
Основные выводы
Плавный розжиг светильников на основе светодиодов популярен в автоподсветке. Кроме того, медленное включение лед-элементов позволяется продлить срок их службы, независимо от места установки. Такое устройство можно купить или изготовить самостоятельно. В последнем случае оно обойдется гораздо дешевле. Для сборки потребуются следующие материалы и инструменты:
- Паяльник с паяльными принадлежностями.
- Основа для платы, например, кусок текстолита.
- Корпус для крепления элементов.
- Резисторы, транзисторы, диоды, конденсаторы и прочие полупроводниковые элементы.
Механизм прибора плавного розжига для светодиодов работает на принципе задерживания, возникающего в цепи «резистор-конденсатор». При этом существуют две основные схемы – простейшая и с возможностью регулировки времени зажигания. Последняя отличается от первой наличием двух резисторов с контролируемым сопротивлением. Чем выше его значение, тем дольше период медленного пуска, и наоборот.
No tags for this post.
Программа микроконтроллера
Программа реализует конечный автомат, находящийся в одном из шести состояний:
— зажигание было отключено, ожидание включения света фар.
— плавный разогрев
— свет уже включался, ожидание повторного включения света фар
— быстрый разогрев
— лампа включена на 100%
— удержание и гашение после отключения фар.
ШИМ реализуется при помощи режима «phase-correct PWM» таймера, работающего на частоте процессора . В этом режиме обеспечивается полное отключение и полное включение при крайних значениях параметра ШИМ, а один период занимает 510 тактов процессора. При работе микроконтроллера на частоте 1,2 МГц, частота импульсов составляет 2353 Гц.
Обработка состояний конечного автомата осуществляется в обработчике прерывания по переполнению таймера.
// Прерывание по таймеру, выполняется 2353 раза в секунду ISR(TIM0_OVF_vect) { if (countdown > 0) { countdown—; return; } switch (current_state) { case STATE_SLOW_WARM: { // медленный прогрев uint8_t o = PWM_OC; if (o >= 254) { PWM_OC = 255; current_state = STATE_ON; } else { o++; PWM_OC = o; if (o < SLOW_RAMP_VALUE) { countdown = SLOW_RAMP_SPEED; } else if (o == SLOW_RAMP_VALUE) { countdown = SLOW_RAMP_HOLD; } else if (o < SLOW_WARM_VALUE) { countdown = SLOW_WARM_SPEED; } else { countdown = SLOW_LAST_SPEED; } } } break; case STATE_FAST_WARM: { // быстрый прогрев uint8_t o = PWM_OC; if (o >= 254) { PWM_OC = 255; current_state = STATE_ON; } else { o++; PWM_OC = o; if (o < FAST_WARM_VALUE) { countdown = FAST_WARM_SPEED; } else { countdown = FAST_LAST_SPEED; } } } break; case STATE_HOLD: { // удержание после отключения uint8_t o = PWM_OC; if (o <= 1) { PWM_OC = 0; current_state = STATE_LIGHT_OFF; } else { o—; PWM_OC = o; countdown = HOLD_FALL_SPEED; } } break; } }
Также присутствует прерывание, наблюдающее за изменением логических уровней на входах PB3 и PB4. Если такое изменение зарегистрировано, вне зависимости от того на каком именно входе, оценивается состояние обоих входов, и в зависимости от этого и текущего состояния, автомат переводится в то, или иное состояние.
// Прерывание по любому изменению логических уровней на входах «зажигание» и «выключатель света» ISR(PCINT0_vect) { if (is_ignition_on()) { if (is_switch_on()) { // Если зажигание включено, и выключатель включен. switch (current_state) { case STATE_IGNITION_OFF: current_state = STATE_SLOW_WARM; countdown = 0; break; case STATE_HOLD: case STATE_LIGHT_OFF: current_state = STATE_FAST_WARM; countdown = 0; break; } } else { // Если зажигание включено, но выключатель отключен switch (current_state) { case STATE_SLOW_WARM: if (PWM_OC >= HOLD_VALUE) { PWM_OC = HOLD_VALUE; current_state = STATE_HOLD; countdown = HOLD_COUNTDOWN; } else { current_state = STATE_IGNITION_OFF; PWM_OC = 0; countdown = 0; } break; case STATE_FAST_WARM: current_state = STATE_HOLD; if (PWM_OC >= HOLD_VALUE) { PWM_OC = HOLD_VALUE; countdown = HOLD_COUNTDOWN; } else { countdown = 0; } break; case STATE_ON: PWM_OC = HOLD_VALUE; current_state = STATE_HOLD; countdown = HOLD_COUNTDOWN; break; } } } else { // Если зажигание выключено — то выкл, без вариантов. current_state = STATE_IGNITION_OFF; PWM_OC = 0; } }
Основное тело программы не выполняет никаких действий, а просто циклически переводит микроконтроллер в режим ожидания (idle).
set_sleep_mode(SLEEP_MODE_IDLE); sleep_enable(); sei(); while(1) { sleep_cpu(); }
В настройках микроконтроллера включен режим защиты по падению напряжения (Brown-out detector) установленный на уровень 2,7 Вольта. При падении напряжения ниже этого уровня микроконтроллер входит в состояние сброса.
Задержка после сброса настроена на 64мс (настройка по-умолчанию).
Набор функций IRIDIUM реле бесшумное «НЕЗАБУДКА-5-12V»
– Функция плавного розжига ламп ближнего света 3 сек БЕСШУНОЕ ВКЛЮЧЕНИЕ;
– Не требует вмешательства в электропроводку;
– Функция задержки включения 5 сек (программируется);
– Реле включает ДХО, ближний свет или ПТФ, когда двигатель заведен;
– 2 порога напряжения срабатывания 13,3 В и 12,8 В (по умолчанию 13,3);
– Реле замыкает контакты по заданной программе даже если переключатель ближнего света или ДХО ВЫКЛЮЧЕН;
Изготовление реле
стандартное реле Kia |
Как оказалось, Kia использует свои какие-то уникальные формы реле, которые не встретишь в магазинчиках на улице, лишь под заказ и за большие деньги. Реле симметричное четырёхногое: две ноги по диагонали – катушка, две другие ноги – замыкаемые контакты. В общем случае, это удобно: не нужно думать, какой стороной втыкать руле, оно будет работать и так и эдак. Но в нашем случае соблюдение полярности играет важную роль, если повернуть реле не той стороной, то это может привести к перегоранию силового транзистора. Что ж, придётся нарисовать на корпусе предупреждающую надпись и быть внимательным при установке.
95220-3A300 разобранный шунт реле для Kia |
Но разбирать реле не пришлось. Как оказалось, в моей машине предусмотрена опция дневных ходовых огней. Всё что нужно – это вытащить заглушку, по форме точь-в-точь реле, и на её место вставить обычное реле. Я так и сделал. В руках у меня оказалась эта заглушка-шунт.
Мало того, что такой шунт куда удобнее в последующей обработке, так ещё и под заказ он обойдётся в разы дешевле, чем целое реле.
Опытный образец для экспериментов |
Немного подпилив и обработав шунт, я приступил к проектированию платы, которая поместилась бы в этот корпус. Места внутри не много: плата не должна превышать 19мм в ширину и 18мм в высоту. Плату пришлось делать двухсторонней. Стороны соединяются меж собой в четырёх точках. Для соединения я использовал кусочки ножек оставшихся от радиодеталей.
Для вытравливания использовал Лазерно-Утюжную Технологию (ЛУТ), отпечатав шаблон на лазерном принтере, на глянцевой фотобумаге для струйной печати.
|
|
| ||||||||
|
|
| ||||||||
|
|
Подключение своими руками
В первую очередь, нужно сказать, что разобрав диммер, каждый сможет понять, что его подключение не сложнее, чем обычного выключателя.
Давайте составим пошаговую инструкцию, пользуясь которой, каждый сможет получить желаемый результат:
Первый и самый важный шаг – обесточить розетку
Это мера безопасности, ведь работать необходимо с оголенными проводами, а получить удар 220в – не самое приятное.
Ослабляем винты на клеммах.
Далее подключаем 2 провода выключателя, к проводам от старого выключателя (важно не забывать и соблюдать полярность, иначе, в лучшем случае, все придется переделывать).
Снимаем верхнюю рамку и устанавливаем устройство со специально отведенное место в стене.
Привинчиваем винты монтажных лапок.
Крепим верхнюю рамку (коробку).