Ошибка P0130 — Датчик кислорода 1, банк 1 — неисправность электрической цепи

Современные автовладельцы самостоятельно диагностируют те или иные ошибки в ЭБУ автомобиля. Сканер позволяет быстро и точно выявить любые неполадки в системах и указать на дальнейшие действия по их устранению.

ВАЖНО! При самостоятельной проверке автосканером водителю, столкнувшемуся с ошибкой р0130, можно не обращаться в сервис, а ликвидировать неисправность своими руками. В подавляющем количестве случаев причин появлений данной ошибки не требуется профессиональных приборов и узкопрофильного оборудования для ремонта.

Причины возникновения ошибки P0130

Наиболее распространенными причинами возникновения данной ошибки являются:

  • Отсоединение разъема датчика кислорода
  • Коррозия разъема датчика кислорода
  • Повреждение электрических проводов, идущих от датчика кислорода к ECM
  • Ограничение подачи топлива (неисправность топливного насоса или засорение топливного фильтра)
  • Нарушение герметичности системы впуска воздуха
  • Нарушение герметичности воздушной или топливной системы
  • Неисправность датчика массового расхода воздуха
  • Неисправность датчика абсолютного давления во впускном коллекторе
  • Неисправность в системе улавливания паров топлива
  • Неисправность датчика кислорода
  • Неисправность регулятора давления топлива
  • Неисправность модуля управления двигателем (ECM)

Как механик диагностирует ошибку P0130?

Для надлежащего диагностирования ошибки P0130 потребуется усовершенствованный диагностический сканер, способный не только считывать сохраненные коды ошибок, но и просматривать показания различных датчиков в режиме реального времени.

Сначала механик считает все сохраненные данные и коды ошибок с помощью сканера OBD-II, чтобы выяснить, когда и при каких обстоятельствах появилась ошибка P0130. Затем он очистит коды ошибок с памяти компьютера и проведет тест-драйв автомобиля, чтобы выяснить, появляется ли код P0130 снова.

Если код ошибки появится снова, механик продолжит диагностирование для установления причины возникновения ошибки. Для этого ему потребуется :

  • Усовершенствованный диагностический сканер
  • Цифровой вольтметр
  • Дымовая установка для обнаружения утечки во впускной системе

Частые ошибки при диагностировании кода P0130

Наиболее распространенной ошибкой при диагностировании кода P0130 является поспешная замена датчика кислорода без выполнения предварительной проверки.

Перед заменой датчика необходимо выполнить тщательное диагностирование с помощью специального оборудования и рассмотреть все возможные причины возникновения ошибки.

Поскольку причин возникновения ошибки P0130 может быть несколько, замена датчика может не решить проблему и привести к тому, что код ошибки появится снова.

Лямбда-зонд на автомобилях ВАЗ

На ВАЗах используется несколько типов датчиков:

1. Bosch № 0 258 005 133, норма Евро — 2. Устанавливался на устаревших моделях с объемом двигателя 1,5 литра. На поздних моделях с нормой Евро — 3, этот датчик использовался как первый, и ставили его до катализатора.

Вторым ставили датчик, у которого есть «обратный разъем». Но можно встретить установленные два одинаковых датчика

2. Bosch № 0 258 006537 устанавливался на автомобилях, выпущенных с октября 2004 года.имеют в своем строении нагревательный элемент.

Лямбда — зонды, выпускаемые , взаимозаменяемы с похожими по строению циркониевыми датчиками. Обратите внимание, что датчик без подогрева можно заменить подогреваемым датчиком. Только не наоборот.

Какой ремонт может исправить ошибку P0130?

Для устранения ошибки P0130 может потребоваться:

  • Подключение сканера OBD-II к диагностическому разъему автомобиля
  • Проверка наличия кода ошибки
  • Анализ данных, сохраненных в памяти ECM автомобиля
  • Очистка кода ошибки с памяти компьютера
  • Проведение тест-драйва автомобиля, чтобы выяснить, появляется ли ошибка P0130 снова
  • Проверка и при необходимости ремонт или замена электрических проводов или разъема датчика кислорода
  • Проверка и при необходимости замена датчика кислорода
  • Проверка и при необходимости замена модуля управления двигателем (ECM)

Кислородный датчик. Насколько страшен отказ «лямбды»

Лет 15 назад лямбда-зонд был страшилкой почище «автомата» в первые годы нашего знакомства с иномарками. Увеличившийся вдруг расход топлива, не изучая причин, почти без вариантов вешали на него. Показывали владельцу какие-то «циферки» на экранчике, приговаривали «кислородник» и ставили перед фактом — надо менять. С другой стороны, присадки в бензин тогда на самом деле быстро выводили «лямбды» из строя. А как с этим дела обстоят сейчас? Что, кроме топлива, может приговорить датчик, как его проверить и на что менять?

С ним точнее, чем без него

Как мы недавно рассказывали, MAF и MAP — это первый и основной инструмент, от показаний которого отталкивается блок управления двигателем, приготавливая топливовоздушную смесь. Какое-то время обходились только ими. Но скоро стало понятно, что рассчитывать количество топлива, которое нужно подать, исходя лишь из поступающего в двигатель воздуха, получается не совсем точно. Якобы Bosch, купивший у американцев лицензию на систему впрыска Bendix Electrojector, уже в 60-х (в 1967-м появился немецкий D-Jetronic) работал над кислородным датчиком. Правда, таковой появился только в 1976 году — в рамках механического впрыска K-Jetronic. Считается, что первыми автомобилями, получившими «кислородник», стали Volvo 260-й серии и знаменитый DeLorean.

При этом Bosch продолжал выпускать механическую систему без «лямбды». В 80-х у фирмы был и электронный впрыск, лишенный кислородного датчика. Однако к тому моменту уже стало ясно — с обратной связью блок управления точнее оперирует подачей топлива. Просто не всегда это было необходимо по соображениям экономии и экологии. Тем не менее с начала того десятилетия Bosch запускает LU1- и LU2-Jetronic, которые имеют лямбда-регулирование. А к концу 80-х лямбда-зонд получает повсеместное распространение. Причем тогда же на отдельных моделях, предназначенных для рынков с самыми жесткими эконормами, в датчике появился нагревательный элемент, призванный максимально быстро выводить его на рабочий режим. Разберемся в конструкции «кислородника».

Точность — понятие относительное

Лямбда-зонд — это фактически два электрода, разделенные твердым электролитом в виде керамики из диоксида циркония. Редко — из диоксида титана.

Внешний электрод (скрыт под защитным колпачком с прорезями) находится в потоке выхлопных газов.

Внутренний электрод расположен в воздухе под атмосферным давлением. Воздух попадает внутрь либо через место, где в датчик входит проводка, …

…либо через специальные отверстия, прикрытые неким пористым материалом.

Два электрода с электролитом между ними образуют собой гальванический элемент. Но проводимым диоксид циркония становится только при разогреве до более чем 300 градусов. Иными словами, сразу после пуска лямбда-зонд не работает. Выхлоп «грязнее», чем при выходе «кислородника» на рабочий режим. Именно для этого в датчик стали добавлять нагревательный элемент, который гораздо быстрее, нежели выхлопные газы, доводит его до нужной температуры. Такие датчики отличаются тремя или четырьмя проводами вместо одного либо двух.

При работе зонда, если кислород есть лишь на внутреннем электроде, датчик генерирует соответствующее напряжение, которое видит блок управления. ЭБУ понимает это как «богатая смесь» и корректирует подачу топлива. Если кислород появляется в выхлопных газах, то напряжение, подаваемое с датчика, падает. Для ЭБУ это сигнал о том, что смесь бедная. Конечно, связь идет не по принципу «включено/выключено». Например, «кислородник» видит стехиометрическую (идеальную, с отношением 14,7:1) смесь. И все-таки лямбда-зонд оценивает наличие кислорода довольно грубо — есть он или нет. Коррекция идет в небольшом диапазоне, по напряжению — всего лишь в пределах от 0 до 1 вольта. А состав выхлопных газов, то есть то, насколько смесь отличается от стехиометрической, он определить не в состоянии.

Поэтому еще в начале 90-х NTK (суббренд NGK) предложила так называемый широкополосный лямбда-зонд, или датчик состава смеси. Снаружи он напоминает обычную «лямбду». Но имеет другую конструкцию.

Внутри у него две ячейки — измерительная и насосная. Еще с простых датчиков стехиометрической смеси соответствует напряжение в 0,45 В. Если оно изменяется, насосная ячейка подает в измерительную или откачивает оттуда некое количество воздуха. И по изменению тока, требуемого для этого, блок управления видит состав смеси и корректирует подачу топлива.

Диапазон измерений лежит в пределах до 5 В. Естественно, используется нагревательный элемент. А связь с ЭБУ состоит из пяти или шести проводов. С конца 90-х (эконормы Евро-3) широкополосный датчик стал неотъемлемым атрибутом автомобилей классом выше среднего. А с начала — середины 2000-х, ближе к появлению Евро-4 или уже с этими экотребованиями, датчики состава смеси вытеснили обычные лямбда-зонды. Тогда же или чуть раньше за катализатором, придвинутым вплотную к выпускному коллектору, появился второй датчик.

В первую очередь он оценивает состояние нейтрализатора — какова у того проходная способность, то есть оплавился он или нет. «Лямбда» за конвертером стоит простая. Однако считается, что, по крайней мере в ряде случаев, и она способна оказывать влияние на подготовку ЭБУ топливовоздушной смеси. Шансов того, что этот второй кислородный датчик как-то пострадает, меньше, чем у первого. Все-таки расположен за катализатором и принимает на себя уже очищенные выхлопные газы. Хотя и в отношении него есть определенные правила эксплуатации. Ну а первый «кислородник» тем более в зоне риска. Так от чего может страдать тот и другой?

Ресурс велик, но есть нюансы

Основным врагом кислородного датчика всегда являлись присадки в топливо — в первую очередь октаноповышающие и антидетонационные. И тетраэтилсвинец, который давно не используют. И тем более железосодержащие, покрывавшие его токопроводящим налетом, отчего «лямбда» «путалась в показаниях», если вовсе не выходила из строя.

Сейчас ферроценовыми присадками, если и пользуются, то ограниченно. Хотя нарваться на них где-нибудь в провинции наверняка можно. Впрочем, многие соединения, добавленные в топливо, способны загрязнять внешний электрод, выводя «кислородник» из строя. В состоянии это сделать и приличный (скажем, от нескольких сот граммов на 1000 км) расход масла на угар. Наконец, есть у датчиков определенный ресурс. Правда, по распространенной информации, лежащий в очень широких пределах — от 40 000 до более чем 100 000 км.

Симптомы потери работоспособности датчика могут быть разными. Объединяет едва ли не все системы то, что, скорее всего, загорится check engine. Но и это не обязательное условие. Растет расход топлива, однако не всегда настолько, что владелец это обязательно заметит. От переливов топлива из выхлопной трубы может попахивать бензином. Кроме того, двигатель способен перебоить на холостом ходу и иметь провалы тяги на разгоне. Да попросту глохнуть.

Но это что касается выхода из строя непосредственно основного рабочего органа — гальванического элемента. А ведь бывает так, что у датчика отказывает нагревательный модуль — по сути, пластинка или спиралька, как у чайника-кипятильника. Из-за чего? Бензин или масло здесь уже не упрекнешь. Остается естественное старение. Причем психологически напрячь владельца нагреватель способен — check при его отказе зажжется. А вот почувствовать какие-то изменения, во всяком случае не в пределах смены времени года или стиля езды, удастся вряд ли. Безусловно, будучи без прогрева, какое-то время после пуска «лямбда» не посылает сигнал блоку управления. И теоретически в этот момент двигатель должен потреблять больше топлива. В реальности же его перерасход может оказаться настолько мизерным, что владелец этого не заметит. Впрочем, выслушаем диагностов.

Роман Евдокимов

Руководитель СТО «АвтоМозг»

— Теоретически любые примеси в бензине могут вывести лямбда-зонд из строя. Тем более моторное масло, которое, если расход на угар велик, в сгоревшем виде попадает на его внешний электрод. Точных значений последнего не скажу. Отмечу лишь, что сейчас все-таки повальных отказов не наблюдаем.

Последствия выхода из строя могут быть крайне разнообразны. Кто-то даже не заметит изменений в расходе топлива, который сильно зависит от забортной температуры. Он, кстати, может даже несколько снизиться — такие случаи известны. На отдельных моделях — например, современных Mercedes-Benz — при любой ошибке активируется аварийный режим с ограничением тяги. И «кислородник» тут не исключение, пусть даже у него отказал лишь нагревательный элемент. Некоторые Honda 2000-х годов на удивление тоже инициируют «аварию» — всего лишь по причине неработоспособности второй «лямбды».

Без работоспособного датчика перед катализатором блок управления будет неправильно готовить топливовоздушную смесь, переливать или обеднять. В первом случае излишки топлива будут догорать в катализаторе. При бедной смеси в камерах сгорания не будет вспышки и несгоревший бензин опять же отправится в нейтрализатор. Излишне говорить, что с ним в итоге произойдет.

Раньше не все сканеры видели показания «лямбды». Проверяли в основном осциллографом, который до сих пор может дать более полную картину ее работоспособности. Но сейчас острой необходимости пользоваться этим прибором нет. По крайней мере, в ряде случаев увидеть работу датчика позволяет даже диагностическая колодка и соответствующая программа в телефоне.

Покупка универсального датчика — лотерея. Да, они дешевле оригинальных. А гарантии, что будут работать, нет. Во всяком случае, нам известны примеры, когда распиновка в разъемах не совпадала с той, что на автомобиле. Это решаемо. Хуже то, что система может просто не увидеть универсальную «лямбду». При этом продавцы обратно их, как правило, не принимают — видят, что их уже устанавливали, по сплющенной уплотнительной шайбе. Альтернатива оригинальным, хотя бы для автомобилей немолодых и недорогих, — покупка бэушных. Такие нередко еще могут поработать достаточно долго.

Еще одна точка зрения, в основном по «японцам» разных лет выпуска.

Андрей Галичин

Диагност автотех

— Как обычные лямбда-зонды, так и датчики состава смеси, то есть широкополосные, проверяются элементарно. Осциллограф, конечно, точный и надежный инструмент диагноста. Но грамотный мастер увидит состояние датчика и по значениям на сканере. Тем более что непринципиально, не работает «лямбда» совсем или дает не вполне корректную информацию и неоперативно. Все равно смесеобразование идет неправильно.

Нагревательный элемент датчика выходит из строя не только от старости, хотя это самая распространенная причина. Может и от механического воздействия. Коллега ремонтировал подвеску собственного автомобиля, молотком попал по выпускному тракту рядом с датчиком и, очевидно, стряхнул его. Оценивать смесь он не прекратил, однако нагрев потерял. При отрицательных температурах из-за отсутствия подогрева увеличившийся расход топлива реально почувствовать. Не только при низкотемпературных пусках, но, например, в городских пробках, когда выпускной коллектор может охлаждаться ниже 300℃.

Другой пример вероятной возможности приговорить датчик — ехать вброд. Погрузиться достаточно глубоко, чтобы залить первую «лямбду». На автомобилях немолодых катализатор может быть расположен довольно низко, а датчик — непосредственно перед ним.

Второй «кислородник», который контролирует катализатор и также всегда имеет нагрев, находится ниже, и «намочить» его можно даже в глубокой луже. Резкий перепад температуры выведет нагрев из строя.

При этом я бы не сказал, что на замену лямбда-зондов клиенты едут валом. Не попадались мне и датчики в «шубе» из сажи. Вообще ресурс их немал. Например, по мануалам Toyota их нужно проверять на 100 000 км и только при необходимости менять. На моем Harrier с 5S «лямбда» отходила 230 000 км.

Но игнорировать неисправность датчика не получится — она приводит к нарушениям в работе системы управления двигателем. На «японках» 90-х двигатель вполне мог глохнуть. Работал с перебоями, с провалами на разгонах. Правда, некоторые автомобили никак не реагируют на проблемную «лямбду».

На моделях посвежее и тем более современных система запросто может встать в «аварию». Иной раз не «увидев» показаний и со второго лямбда-зонда. В этой ситуации надо смотреть катализатор. Если из строя вышел первый датчик — обязательно менять! ЦПГ переливами топлива по этой причине не загубит. Но сам нейтрализатор, очень вероятно, оплавится.

Покупать «кислородники» малоизвестных брендов не стоит. Хотя и оригинальные, бывало, работали буквально неделю-две. В целом же советую Bosch, Denso, NGK. Универсальные обычно продаются без «фишки». У Bosch с разъемом, но тоже не всегда. Мы используем NGK/NTK — за все время с их отказами по причине низкого качества не сталкивались.

А вот мнение из «конкурирующего лагеря» — из структуры, занимающейся обслуживанием и ремонтом «немцев»:

Александр Санников

Директор по развитию СТО Das Autoservice

— Лямбда-зонд — довольно выносливая штука. Конечно, ее может прикончить и паленый бензин, и «масложор». Другое дело, что первый в более-менее крупных городах уже редкость. А второй, если доходит до полулитра-литра на 1000 км, то автовладельца вряд ли будет беспокоить какой-то там датчик. Нередко «кислородники» (особенно вторая «лямбда») расположены достаточно низко и постоянно подвергаются обработке грязью, влагой. И все равно работают! Ресурс? К примеру, Bosch заявляет о работоспособности своих датчиков на протяжении как минимум 150 000 км. Мы это в общем подтверждаем, за исключением редких случаев.

Элемент нагрева лямбда-зондов столь же ресурсен и, как правило, отказывает лишь по причине естественного износа. Однако бывает, что он повреждается механически — например, дорожными камешками или от естественных колебаний при демонтаже-монтаже выхлопа. Ни к каким последствиям, по сути, это не ведет — загорится Check, и лямбда-регулирование состава топливовоздушной смеси или «лямбда-слежка» за чистотой выхлопа будут включаться позже, по мере прогрева зонда естественным путем от выхлопных газов. Выход из строя подогрева второго лямбда-зонда за катализатором не приведет ни к чему, кроме индикатора на панели приборов, но если речь о первой «лямбде», то выхлоп в первые минуты станет чуточку грязнее и на толику вырастет расход топлива. Для владельца первое будет не принципиально, а второе он, скорее всего, не заметит.

Но на неисправность самого лямбда-зонда не обратить внимание трудно. Автомобиль либо «зачекует», либо заработает неровно и из выхлопной трубы запахнет несгоревшим бензином. Также двигатель может глохнуть, троить, не развивать мощность. Для немецких машин с их прецизионными моторами даже загоревшийся безо всяких дополнительных симптомов Check Engine — уже повод ехать на диагностику. А тут такое! Впрочем, переживать за ЦПГ не стоит. Однако если на это плюнуть (вполне возможно, что автомобиль будет как-то передвигаться), рано или поздно произойдет разрушение катализатора — он оплавится.

Мы на автомобили клиентов устанавливаем ремонтные датчики Bosch. Все «немцы» комплектуются лямбда-зондами этого производителя на конвейере, а ремкомплект отличается от оригинала лишь чуть большей универсальностью — длиной проводов и совместимостью разъемов. При этом периодически наблюдаем, как в других сервисах, меняя датчики на V6, V8, V10 и V12, путают правую и левую стороны — нестабильная работа двигателя на холостых и потеря мощности в движении в этом случае гарантированы.

Добавим, что на V-«образниках» или «оппозитниках» при неисправности датчика с одной стороны блока (неважно, от заправки некачественным топливом или подошел к концу ресурс) в скором времени стоит ожидать «окончания» и второго. А менять их надо парами — чтобы исключить вероятность несинхронной работы.

Скажем еще, что далеко не всегда для первой и второй «лямбды» есть аналоги от Bosch, Denso, Delphi, NGK. И даже от производителей из Китая. Последнее, пожалуй, к лучшему. Но отсутствие альтернативы от фактических конвейерных поставщиков заставляет покупать детали под брендами автопроизводителей. А это значительно дороже.

Наименование/модельToyota Harrier U10, 1MZ (1997–2003 гг.)Toyota Corolla E140, 1NZ (2006–2012 гг.)Mitsubishi Outlander GF0W, 4B12 (2012 г. — н. в.)Skoda Octavia A7, 1,8 TSI (2012–2020 гг.)
Датчик состава смеси (1-я «лямбда»), оригинальный/альтернативный12 000/4500–540011 200/4300–11 5002000/390017 700/8400
Кислородный датчик (2-я «лямбда»), оригинальный/альтернативный9300/1900–390088003200/1900–95004400/1900–2800
Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]